THEORETICAL PREDICTIONS OF THE STRUCTURES AND ENERGETICS OF $\operatorname{ClF}_n^{+/-}(n=1-5)$ IONS: EX-TENDED STUDIES OF HYPERVALENT SPECIES USING THE RECOUPLED PAIR BONDING MODEL

L. CHEN, D. E. WOON, and T. H. DUNNING, JR., Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Following studies of the nature of covalent and recoupled pair bonding in $PF_n(n=1-5)$, $SF_n(n=1-6)$, and $ClF_n(n=1-7)$, we have used the recoupled pair bonding model to investigate the $ClF_n^{+/-}(n=1-5)$ ions. The behavior of the cation series parallels the SF_n series to great extent, while the behavior of the anion series would parallel that of ArF_n if those species were bound. In the present research, we predict experimentally measurable properties, such as the electron affinities (EA) and ionization energies (IE) of the associated neutral ClF_n species. The optimized ground state structures, bond energies, and spectral properties of $ClF_n^{+/-}$ were obtained by employing high level *ab initio* calculations (MRCI, CCSD(T)) with correlation consistent basis sets. Our predictions agree well with the structures of experimentally observed species, including ClF_2^+ , ClF_2^- , ClF_4^+ , and ClF_4^- . Low-lying excited states of $ClF^+(^4\Sigma^-)$ and $ClF_2^+(^3B_1)$, were also identified. We found the excited 3B_1 state of ClF_2^+ is bent with an angle of 154.8° and a bond length of 1.596 Å at the RCCSD(T)/AVQZ level. We also found a major difference between SF_2 and ClF_2^+ : the 3A_2 state of SF_2 is bound while the same state of $ClF_2^{+/-}$ is repulsive. Second, we systematically explored the bond formation processes, adding F atoms one at a time to the optimized $ClF_n^{+/-}(1 \le n \le 5)$ ions. We found the ionization energies and the electronic affinities both exhibit an oscillating trend as seen in the bond energies of the neutral ClF_n species. The structural and energetic data obtained by our calculations might help spectroscopists to identify new $ClF_n^{+/-}$ species or to detect new electronic states of known species.