CONNECTIONS BETWEEN THE RAYLEIGH-SCHRÖDINGER AND VAN VLECK PERTURBATION THEORIES AND THEIR APPLICATION TO RESONANCES IN MOLECULAR VIBRATIONS

D. A. MATTHEWS, J. VÁZQUEZ, AND J. F. STANTON, Institute for Theoretical Chemistry, The University of Texas at Austin, Austin, Texas 78712.

The similarities of Rayleigh-Schrödinger (RSPT) and Van Vleck (VVPT) perturbation theories are discussed. It is shown that a straightforward application of RSPT produces the VVPT Hamiltonian at the highest order of the contact transformations applied, which is always a diagonal matrix. VVPT Hamiltonians at an order higher than this are non-diagonal, but it is shown that a careful application of RSPT can produce the same matrices. The usefulness of these higher-order "dressed" Hamiltonians in treating resonance is discussed, as well as specific discussions of first-order Fermi, second-order Darlington-Dennison, and higher-order resonances. Lastly, VVPT is discussed in a wavefunction-based context and RSPT in a Hamiltonian-based context, and the approaches are contrasted.