HIGH SENSITIVITY CRDS OF THE $a^1\Delta_g \leftarrow X^3\Sigma_g^-$ BAND OF OXYGEN NEAR 1.27 µm: MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE TRANSITIONS IN SPECTRA OF FIVE ISOTOPOLOGUES

O. M. LESHCHISHINA, S. KASSI, L. WANG, Université Joseph Fourier/CNRS, Laboratoire de Spectrométrie Physique, 38402 Saint Martin d'Hères, FRANCE; <u>I. E. GORDON</u>, L. S. ROTHMAN, Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge MA 02138-1516, USA; A. CAMPARGUE, Université Joseph Fourier/CNRS, Laboratoire de Spectrométrie Physique, 38402 Saint Martin d'Hères, FRANCE.

The knowledge of accurate spectroscopic parameters for the $a^1 \Delta_g \leftarrow X^3 \Sigma_g^-$ band of molecular oxygen near 1.27 μ m is very important in the field of remote sensing. Although this band was studied by spectroscopists for over a century a lot of discrepancies still remain in the previously reported line positions and intensities. In this work the Continuous Wave-Cavity Ring Down Spectroscopy (CW-CRDS) technique has been used to record with high sensitivity the absorption spectrum of this band. The spectra were obtained between 7640 and 7917 cm⁻¹ with "natural" oxygen and with a sample highly enriched in ¹⁸O. The absolute intensities of 377 and 652 oxygen transitions were measured in the two spectra, respectively. They include the $a^1\Delta_g \leftarrow X^3\Sigma_g^-$ (0-0) bands of ¹⁶O₂, ¹⁶O¹⁸O, ¹⁶O¹⁷O, ¹⁷O¹⁸O and ¹⁸O₂. The (0-0) bands of ¹⁶O₂ and ¹⁸O₂ show (previously undetected) electric quadrupole transitions with line intensities ranging from 1×10^{-30} to 1.9×10^{-28} cm/molecule. They are accompanied by the $a^1\Delta_g \leftarrow X^3\Sigma_g^-$ (1-1) hot bands which are also reported for the first time. Accurate spectroscopic parameters for the observed bands were derived from a global fit of the experimental line positions, combined with microwave and Raman measurements available in the literature.