VIBRATIONAL SPECTRA OF CHLOROFORM, FREON-11 AND SELECTED ISOTOPOMERS IN THE TERA-HERTZ REGION

<u>CHRISTA HAASE</u>, JINJUN LIU^a and FRÉDÉRIC MERKT, *Laboratorium für Physikalische Chemie*, ETH-Zürich, 8093 Zürich, Switzerland.

The fundamental bands of the CCl₃ asymmetric deformation modes of selected isotopomers of chloroform (CHCl₃) and freon-11 (CFCl₃) have been measured between 7 and 8 THz in a static cell at ambient temperature using a laser-based source of tunable radiation in the terahertz region (0.1-10 THz) of the electromagnetic spectrum. Simulation of the rotational contour of the ν_6 fundamental transition of 12 CH 35 Cl₃ confirmed previously suggested values for C_6 and $C_6\zeta_6$. The fundamental frequencies were derived with a precision of 2 GHz for all compounds except CF 35 Cl₃, where the precision amounted to 3 GHz. The frequencies are in agreement with values calculated *ab initio*. Extension of the experimental setup to enable measurement of THz spectra of molecules in supersonic jet expansions and partially resolve their rotational structure is in progress.

[&]quot;current address: Department of Chemistry, Laser Spectroscopy Facility, The Ohio State University, 120 W. 18th Avenue, Columbus, Ohio 43210, USA.

^bJ. H. Carpenter, P. J. Seo and D. H. Whiffen J. Mol. Spectrosc. 170, 215, (1995).