NEW PERSPECTIVE ON PF_n (n=1–5) FROM THE RECOUPLED PAIR BONDING MODEL: A QUANTUM CHEMICAL STUDY

<u>D. E. WOON</u> and T. H. DUNNING, JR., Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Structures of the PF_n family (n=1-5) were characterized with high level RCCSD(T) coupled cluster theory calculations using triple and quadruple zeta quality correlation consistent basis sets. In addition to accounting for the well-known ground states of PF through PF₅, insight from the recoupled pair bonding model also led to locating a previously unknown ³B₁ state of PF₃, which lies about 90 kcal/mol above PF₃(¹A₁) but is still bound with respect to PF₂(²B₁)+F(²P) by about 40 kcal/mol. We also revisited the less-studied C_{3v} local minimum on the PF₄ doublet surface and characterized the transition state for interconversion to the C_{2v} global minimum. The energetics suggest that both PF₃(³B₁) and C_{3v} PF₄(²A₁) are potentially observable in the laboratory. The trends in the bond dissociation energies and relative energy differences of the PF_n family are very consistent with predictions from the recoupled pair bonding model.