THE OPTICAL STARK SPECTRUM OF THE $A^3\Phi_4 - X^3\Phi_4$ BAND SYSTEM OF IRIDIUM MONOFLUORIDE, IrF

<u>XIUJUAN ZHUANG</u> AND TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; COLAN LINTON, Center for Lasers, Atomic and Molecular Sciences and Physics Department, University of New Brunswick, Fredericton, NB Canada E3B 5A3.

Recently the New Brunswick group^{*a*} reported on the field-free detection and analysis of the $A^3\Phi_4 - X^3\Phi_4$ band system of IrF. Here we report on the analysis Q(4)(15922 cm⁻¹) branch feature of the (1,0) band of the ¹⁹¹IrF isotopologue of that system recorded at field strengths of up to 3000 V/cm. The spectra are surprisingly complex at the achieved resolution of 40 MHz due to the presence of both the ¹⁹¹Ir(I=3/2) and ¹⁹F(I=1/2) magnetic hyperfine splitting. The determined permanent electric dipole moment, μ_{el} , for the $X^3\Phi_4$ state is compared with that recently determined ^{*b*} for the $X^3\Phi_4$ state of isovalent CoF. The trend in μ_{el} amongst the ground states of IrF, IrC and IrN ^{*c*} will be discussed. Finally, a simple molecular orbital correlation diagram will be used to rationalize the change in μ_{el} upon excitation from the $X^3\Phi_4$ to $A^3\Phi_4$ state.

^aA.G. Adam; A.D. Granger; L.E. Downie; D.W. Tokaryk and C. Linton Can.J. Phys. 87 557, 2009.

^bH. Wang; X. Zhaung; and T.C. Steimle J. Chem. Phys. 131 114315, 2009.

^cA.J.Marr; M.E. Flores; and T.C. Steimle J. Chem. Phys. 104 8183, 1996.