HIGH RESOLUTION SPECTRA OF CARBON DIOXIDE CLUSTERS IN THE ν_{3} BAND REGION

Abstract

A.R.W. MCKELLAR, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON KlA 0R6, Canada; MAHIN AFSHARI, M. DEHGHANY, and N. MOAZZEN-AHMADI, Department of Physics and Astronomy, University of Calgary, 2500 University Dr., N.W., Calgary, AB T2N 1N4, Canada.

There is widespread interest in carbon dioxide clusters from a variety of experimental and theoretical perspectives. But in terms of high resolution spectroscopy, the only definitive information concerns $\left(\mathrm{CO}_{2}\right)_{2}$ and $\left(\mathrm{CO}_{2}\right)_{3}$. The dimer has a planar slipped parallel geometry with $C_{2 h}$ symmetry. ${ }^{a}$ Two isomers are known for the trimer: a planar cyclic form with $C_{3 h}$ symmetry ${ }^{b}$ and a sort of "barrel-shaped" form with C_{2} symmetry. ${ }^{\text {c }}$
Here we analyze two new bands in the $\mathrm{CO}_{2} \nu_{3}$ region. The first is a dimer combination band near $2382 \mathrm{~cm}^{-1}$ whose assignment raises interesting questions about the intermolecular vibrations of $\left(\mathrm{CO}_{2}\right)_{2} .{ }^{d}$ The second band is a trimer band near $2370 \mathrm{~cm}^{-1}$ which is very similar to one we observed previously near $2364 \mathrm{~cm}^{-1}$. We assign it to a combination involving another out-of-plane vibration of the cyclic trimer. In addition to these newly assigned bands, we also discuss a number of clear and (mostly) well-resolved bands which apparently must belong to $\left(\mathrm{CO}_{2}\right)_{N}$ clusters with N in the range $6 \sim 15$. Although they cannot be precisely assigned at this time, these bands offer intriguing future prospects for learning more about the structures and vibrational dynamics of CO_{2} clusters in a challenging and important size range.

[^0]
[^0]: ${ }^{a}$ K.W. Jucks, Z.S. Huang, D. Dayton, R.E. Miller, and W.J. Lafferty, J. Chem. Phys. 86, 4341 (1987); M.A. Walsh, T.H. England, T.R. Dyke, and B.J. Howard, Chem. Phys. Lett. 142, 265 (1987).
 ${ }^{b}$ G.T. Fraser, A.S. Pine, W.J. Lafferty and R.E. Miller, J. Chem. Phys. 87, 1502 (1987).
 ${ }^{c}$ M.J. Weida and D.J. Nesbitt, J. Chem. Phys. 105, 10210 (1996).
 ${ }^{d}$ H. Chen and J.C. Light, J. Chem. Phys. 112, 5070 (2000).
 ${ }^{e}$ M. Dehghany, M. Afshari, N. Moazzen-Ahmadi, and A.R.W. McKellar, J. Chem. Phys. 128, 064308 (2008).

