SPECTRAL DISSIMILARITIES BETWEEN AZULENE(C10H8) AND NAPHTHALENE(C10H8)

MASAAKI BABA, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

Polycyclic aromatic hydrocarbons (PAHs) are of great interest in the molecular structure and excited-state dynamics, and there have been extensive spectroscopic and theoretical studies. Azulene and naphthalene are bicyclic aromatic hydrocarbons composed of oddand even-membered rings, respectively. First, they were discriminated by a theory of mutual polarizability. ^a Naphthalene is an alternant hydrocarbon, but azulene is not. In contrast, spectral resemblances were found by John Platt *et al.*, ^b and were explained by their simple model of molecular orbital. However, the absorption and emission feature of the S_1 and S_2 states is completely different each other. We have investigated each rotational and vibrational structures, and radiative and nonradiative processes by means of high-resolution spectroscopy ^{c d} and *ab initio* calculation. The equilibrium structures in the S_0 , S_1 , and S_2 states are similar. This small structural change upon electronic excitation is common to PAH molecules composed of six-membered rings. The fluorescence quantum yield is high because radiationless transitions such as intersystem crossing (ISC) to the triplet state and internal conversion (IC) to the S_0 state are very slow in the S_1 state. In contrast, the S_1 state of azulene is nonfluorescent and the $S_1 \leftarrow S_0$ excitation energy is abnormally small. We consider that the potential energy curve of a b_2 vibration is shallower in the S_1 state, and therefore the vibronic coupling with the S_0 state is strong to enhance the IC process remarkably. This situation is, of course, due to its peculiar characteristics of odd-membered rings and molecular symmetry, which are completely different from the naphthalene molecule.

^aC. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. A, **191**, 39 (1947)

^bD. E. Mann, J. R. Platt, and H. B. Klevens, J. Chem. Phys., **17**, 481 (1949)

^cY. Semba, M. Baba, et al., J. Chem. Phys., **131**, 024303 (2009)

^dK. Yoshida, M. Baba, et al., J. Chem. Phys., **130**, 194304 (2009)