SPECTRAL DISSIMILARITIES BETWEEN AZULENE $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ AND NAPHTHALENE $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$

MASAAKI BABA, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
Polycyclic aromatic hydrocarbons (PAHs) are of great interest in the molecular structure and excited-state dynamics, and there have been extensive spectroscopic and theoretical studies. Azulene and naphthalene are bicyclic aromatic hydrocarbons composed of oddand even-membered rings, respectively. First, they were discriminated by a theory of mutual polarizability. ${ }^{a}$ Naphthalene is an alternant hydrocarbon, but azulene is not. In contrast, spectral resemblances were found by John Platt et al., ${ }^{b}$ and were explained by their simple model of molecular orbital. However, the absorption and emission feature of the S_{1} and S_{2} states is completely different each other. We have investigated each rotational and vibrational structures, and radiative and nonradiative processes by means of high-resolution spectroscopy ${ }^{c d}$ and ab initio calculation. The equilibrium structures in the S_{0}, S_{1}, and S_{2} states are similar. This small structural change upon electronic excitation is common to PAH molecules composed of six-membered rings. The fluorescence quantum yield is high because radiationless transitions such as intersystem crossing (ISC) to the triplet state and internal conversion (IC) to the S_{0} state are very slow in the S_{1} state. In contrast, the S_{1} state of azulene is nonfluorescent and the $S_{1} \leftarrow S_{0}$ excitation energy is abnormally small. We consider that the potential energy curve of a b_{2} vibration is shallower in the S_{1} state, and therefore the vibronic coupling with the S_{0} state is strong to enhance the IC process remarkably. This situation is, of course, due to its peculiar characteristics of odd-membered rings and molecular symmetry, which are completely different from the naphthalene molecule.

[^0]
[^0]: ${ }^{a}$ C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. A, 191, 39 (1947)
 ${ }^{b}$ D. E. Mann, J. R. Platt, and H. B. Klevens, J. Chem. Phys., 17, 481 (1949)
 ${ }^{c}$ Y. Semba, M. Baba, et al., J. Chem. Phys., 131, 024303 (2009)
 ${ }^{d}$ K. Yoshida, M. Baba, et al., J. Chem. Phys., 130, 194304 (2009)

