AN EXHAUSTIVE ISOTOPIC STUDY OF THE ABUNDANT ASTRONOMICAL MOLECULE CYCLOPROPENYLIDENE, $c-C_3H_2$

SILVIA SPEZZANO, C. A. GOTTLIEB, M. C. McCARTHY AND P. THADDEUS, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, and School of Engineering & Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138.

Cyclopropenylidene, c-C₃H₂, is the most widely distributed ring in our galaxy; it has been detected in more than 50 astronomical sources, and its isotopic species c-C₃HD has been observed towards several dense cores in cold dark clouds. Because of the high observed abundance and large deuterium fractionation for this small hydrocarbon ring, other isotopic species of c-C₃H₂ may be good candidates for astronomical detection. For these reasons, an exhaustive isotopic study of c-C₃H₂ has now been undertaken in which rotational spectra of c-C₃D₂, c-C₃HD, and the carbon–13 isotopic species of c-C₃HD and c-C₃H₂ have been detected in the centimeter-wave band by Fourier transform microwave (FTM) spectroscopy between 10 and 40 GHz. For c-C₃D₂, millimeter- and submillimeter-wave spectra were subsequently measured between 140 and 400 GHz. Rotational and centrifugal distortion constants derived either from previous measurements or those predicted from theory are compared with the precise constants determined here.