THE JAHN-TELLER (JT) EFFECT IN THE \widetilde{A} STATE OF THE NITRATE RADICAL NO₃

KANA TAKEMATSU, NATHAN EDDINGSAAS, and MITCHIO OKUMURA, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125; JOHN STANTON, Department of Chemistry, University of Texas at Austin, Austin, TX 78712.

The JT effect in the $\widetilde{A}^2 E''$ of NO₃ is poorly understood. A preliminary spectrum of the vibronically-allowed $\widetilde{A} \leftarrow \widetilde{X}$ transition, coupled with ab initio calculations, shows moderate JT activity in the \widetilde{A} state. Vibronic bands exhibit either static or dynamic JT distortions depending on the vibrational level of the upper \widetilde{A} state. The picture of the \widetilde{A} state is however incomplete. For example, in the $E'' \otimes e' = a_1'' \oplus a_2'' \oplus e''$ manifold, while the splitting would provide a direct measure of the JT strength, only the a_1'' levels have been observed. We have gained new insight into the \widetilde{A} state by examining the hot bands of NO₃ which access previously unobserved dark levels of the \widetilde{A} state.