DETECTION OF THE MAGNETIC DIPOLE-ALLOWED ORIGIN BAND OF THE $\widetilde{A} \leftarrow \widetilde{X}$ TRANSITION OF THE NITRATE RADICAL NO₃

KANA TAKEMATSU, NATHAN EDDINGSAAS, and MITCHIO OKUMURA, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125; JOHN STANTON, Department of Chemistry, University of Texas at Austin, Austin, TX 78712.

Despite its simplicity and atmospheric significance, the lowest electronic states of NO₃ remain poorly understood. The \widetilde{A}^2E'' state is Jahn-Teller (JT) active and is pseudo-JT coupled to the ground \widetilde{X}^2A_2' and excited \widetilde{B}^2E'' states. While the band origin 0_0^0 of the $\widetilde{A}\leftarrow\widetilde{X}$ transition is purely electric forbidden, the cavity ringdown spectrum of the vibronically-allowed $\widetilde{A}\leftarrow\widetilde{X}$ bands has shown rotationally-resolvable structures. We have detected the magnetic dipole-allowed origin (\sim 7060 cm⁻¹) via CRD spectroscopy. Analysis of the band contour along with its implications of the JT/Pseudo-JT couplings in the dark \widetilde{A} state of NO₃ will be discussed.