PHOTOELECTRON SPECTROSCOPY AND DYNAMICS OF ICN-

ELISA M. MILLER, LEONID SHEPS, and W. CARL LINEBERGER, JILA, Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309.

We report the photoelectron spectrum of ICN⁻ and preliminary UV photodissociation studies of ICN⁻. Because CN behaves like a pseudo-halogen, we compare our results to previous spectroscopic and dynamical work on dihalides, such as I_2^- , IBr⁻, and ICl⁻. The photoelectron spectrum of ICN⁻ resembles that of IBr⁻ with transitions to the ground electronic state and two ³II excited states. The transition to the ground electronic state of ICN is broad (FWHM $\approx 0.75 \text{ eV}$) and structureless which corresponds to accessing high lying vibrational states. Transitions to the excited states are narrow and spaced by 0.13 eV. A complete analysis of the photoelectron spectrum is underway to determine the structure and energetics of ICN⁻ and neutral ICN. In addition, preliminary nanosecond studies of ICN⁻ UV photodissociation are reported. In these two-photon experiments, one photon dissociates ICN⁻ and the second photon detects anionic products via photoelectron spectroscopy. Following excitation ($\lambda = 260 \text{ nm}$) to a dissociative electronic state of ICN⁻, we observe two anionic photoproducts: I⁻ and CN⁻. The presence of both photoproducts could be a result of a non-adiabatic transition midway through photoelectron studies are underway to determine the actual dissociation pathway. This research is being funded by NSF and AFOSR.