Ozone photodissociation below 234 nm gives rise to a bimodal recoil velocity distribution in the minor channel giving $\text{O} \left(^3P_2 \right)$ as a product, and the source of this bimodality has so far eluded definitive explanation. It has long been ascribed to coincident production of highly vibrationally excited O_2 possibly through some distinct intersection seam of the relevant potential energy surfaces, but extensive theoretical effort has failed to find a plausible pathway for this. We have used the DC sliced imaging method to reinvestigate the product $\text{O} \left(^3P_2 \right)$ of ozone photodissociation at 226 nm at very high velocity resolution. The experimental results are focused exclusively on the slow component for the $\text{O} \left(^3P_2 \right)$ fragments formed in the photodissociation of ozone at the 226.06 nm for $J=1$ and 225.65 nm for $J=2$. The total translational energy distributions for the slow components show two distinct peaks that are coincident, within 0.01 eV, with the onset of $v=0$ and 1 of the $A^1\Delta_u$ state of O_2 as a cofragment. Furthermore, trajectory calculations show that, at this excitation energy, the region of the ozone B state that correlates with the Herzberg states of oxygen is accessible, and a fraction of trajectories reach this intersection region. These combined experimental and theoretical investigations provide compelling evidence that the origin of the slow peaks in the $\text{O} \left(^3P_2 \right)$ product of ozone dissociation below 234 nm is the channel yielding the $A^1\Delta_u$ state of O_2 as a coproduct.