TERAHERTZ SPECTROSCOPY AND GLOBAL ANALYSIS OF THE BENDING VIBRATIONS OF $^{12}\mathrm{C}_{2}\mathrm{H}_{2}$ and $^{12}\mathrm{C}_{2}\mathrm{D}_{2}$

SHANSHAN YU, BRIAN J. DROUIN, JOHN C. PEARSON AND HERBERT M. PICKETT, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; VALERIO LATTANZI AND ADAM WALTERS, Centre d'Etude Spatiale des Rayonnements, Universit de Toulouse [UPS], CNRS [UMR 5187], 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4, France.

Symmetric molecules have no permanent dipole moment and are undetectable by rotational spectroscopy. Their interstellar observations have previously been limited to mid-infrared vibration-rotation spectroscopy. Although relatively weak, vibrational difference bands provide a means for detection of non polar molecules by terahertz techniques with microwave precision. Herschel, SOFIA, and ALMA have the potential to identify a number of difference bands of light symmetric species, e.g., C_2H_2 , CH_4 and C_3 . This paper reports the results of the laboratory study on ${}^{12}C_2H_2$ and ${}^{12}C_2D_2$. The symmetric isotopomers of acetylene have two bending modes, the trans bending ν_4 (${}^{1}\pi_g$), and the cis bending ν_5 (${}^{1}\pi_u$). For ${}^{12}C_2H_2$, the two bending modes occur at 612 and 729 cm⁻¹, respectively. For ${}^{12}C_2D_2$, the two bending modes occur at 511 and 538 cm⁻¹. The ν_5 - ν_4 difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 117 cm⁻¹ (3500 GHz) for ${}^{12}C_2H_2$ and 27 cm⁻¹ (900 GHz) for ${}^{12}C_2D_2$.

Two hundred and fifty-one ${}^{12}C_2D_2$ transitions, which are from $\nu_5 - \nu_4$, $(\nu_5 + \nu_4) - 2\nu_4$ and $2\nu_5 - (\nu_5 + \nu_4)$ bands, have been measured in the 0.2-1.6 THz region, and 202 of them were observed for the first time. The precision of these measurements is estimated to be from 50 kHz to 100 kHz. A multistate analysis was carried out for the bending vibrational modes ν_4 and ν_5 of ${}^{12}C_2D_2$, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for ${}^{12}C_2D_2$ by adding the new measurements to the old data set which had only 10 lines with microwave measurement precision. The experiments on ${}^{12}C_2H_2$ are in progress and ten *P* branch lines have been observed. We will present the ${}^{12}C_2H_2$ results to date.