MILLIMETER-WAVE SPECTRA OF CARBON MONOXIDE SOLVATED WITH HELIUM ATOMS

L. A. SURIN, T. F. GIESEN, S. SCHLEMMER, I. Physikalisches Institut, University of Cologne, 50937 Cologne, Germany; A. V. POTAPOV, B. S. DUMESH, Institute of Spectroscopy of Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia.

Millimeter-wave spectra of $\mathrm{He}_{N}-\mathrm{CO}\left({ }^{12} \mathrm{C}^{16} \mathrm{O},{ }^{13} \mathrm{C}^{16} \mathrm{O},{ }^{12} \mathrm{C}^{18} \mathrm{O},{ }^{13} \mathrm{C}^{18} \mathrm{O}\right)$ clusters with N up to 10 , produced in a molecular expansion, were observed using intracavity OROTRON jet spectrometer in the frequency range of $110-150 \mathrm{GHz}$. The $R(0)$ transitions were detected, which correspond to the known b-type $(K=1-0) R(0)$ lines of the binary system, $\mathrm{He}_{1}-\mathrm{CO}$. Further, the a-type $(K=0-0)$ rotational transitions of $\mathrm{He}_{N}-\mathrm{CO}(N=7,8)$ in the frequency range of $20-40 \mathrm{GHz}$ were measured combining OROTRON spectrometer with a double resonance technique. The isotopic shifts of the cluster transitions show remarkably smooth behavior with N from 1 to 6 and become rather scattering for $N \geq 7$. The dependence of the rotational constant (cluster moment of inertia) and of the shift of the CO fundamental vibration on the number of He atoms in cluster were obtained for $\mathrm{He}_{N}-\mathrm{CO}$ isotopologues from the analysis of their infrared spectra ${ }^{a}$ and very recent microwave data for the normal $\mathrm{He}_{N}-{ }^{12} \mathrm{C}^{16} \mathrm{O}$ isotopologue ${ }^{b}$. This study explores the microscopic evolution of superfluidity, which becomes apparent even in such small clusters as $\mathrm{He}_{4}-\mathrm{CO}$. The obtained results are compared with those from recent quantum Monte-Carlo calculations ${ }^{c}$ and used to further interpret recent infrared measurements of CO in helium nanodroplets ${ }^{d}$.

[^0]
[^0]: ${ }^{a}$ J. Tang, A. R. W. McKellar, J. Chem. Phys. 119, 763 (2003); A. R. W. McKellar, J. Chem. Phys. 121, 6868 (2004); A. R. W. McKellar, J. Chem. Phys. 125, 164328 (2006).
 ${ }^{b}$ L. A. Surin, A. V. Potapov, B. S. Dumesh, S. Schlemmer, Y. Xu, P. L. Raston, and W. Jäger, Phys. Rev. Lett. 101, 233401 (2008).
 ${ }^{c}$ T. Škrbić, S. Moroni, and S. Baroni, J. Phys. Chem. A 111, 7640 (2007).
 ${ }^{d}$ K. von Haeften, S. Rudolph, I. Simanovski, M. Havenith, R. E. Zillich, and K. B. Whaley, Phys. Rev. B 73, 054502 (2006).

