NATURE OF TORSION-INVERSION COUPLING IN $\rm CH_3NH_2, \rm CH_3OH_2^+$ AND $\rm CH_3CH_2\cdot$

<u>RAM S BHATTA</u>, AMY GAO AND DAVID S PERRY, *Department of Chemistry, The University of Akron, OH* 44325-3601.

Two-dimensional torsion-inversion surfaces for methylamine, protonated methanol and ethyl radical were calculated and fit to a function containing a polynomial in the inversion $angle(\tau)$ and trigonometric functions of the torsional $angle(\alpha)$. Calculations were done at the B3LYP, MP2, and CCSD(T) levels with the 6-311++G(d,p) and 6-311++G(3df, 2p) basis sets and partial optimization. CH₃NH₂, CH₃OH₂⁺ and CH₃CH₂· have G₁₂ symmetry with 6-equivalent minima which are located by the various calculations at inversion angles 6.5 to 11; 42 to 45.5 and 52.5 to 55 degrees respectively on either side of planar. The three molecules have very different barriers to inversion ranging from no barrier for CH₃CH₂· to 838 cm⁻¹ for CH₃OH₂⁺ to 1837 cm⁻¹ for CH₃NH₂. The dominant torsion-inversion coupling term in all cases has the form $\tau cos3\alpha$.