CONFIRMATION OF VIBRATION COUPLING IN THE SYMMETRIC CH STRETCH AS REVEALED BY COHERENCE-DETECTED FTMW-IR SPECTROSCOPY OF CH₃OD.

Sylvester Twagirayezu, Trocia N. Clasp, David S. Perry, Department of Chemistry, The University of Akron, Akron OH 44325; Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box 400319, Charlottesville, VA 22904.

Rotational state-selection with E-species transitions ($3_{0} \leftarrow 3_{-1}, 2_{0} \leftarrow 3_{1}, 1_{0} \leftarrow 1_{1}$) is employed to record the infrared spectra in the range 2750-2900 cm⁻¹. The observed spectra of CH₃OD contain only one vibrational band origin whereas 12 interacting vibrational bands of CH₃OH are observed in the same interval. There are no interacting vibrational bands in the CH₃OD spectra because the first tier states are shifted out of resonance. This observation confirms that the dominant coupling pathway in the v_{9} CH stretch of CH₃OH is the third order coupling of the CH stretch to a combination of the COH bend and an HCH bend, which subsequently couples to high order combination bands involving torsional excitation.