TORSIONAL SPECTRUM OF $^{12}\rm{CH}_3{}^{13}\rm{CH}_3{:}$ A 2-STATE FREQUENCY ANALYSIS OF THE TORSIONAL BANDS AND THE ν_{12} VIBRATIONAL FUNDAMENTAL

L. BORVAYEH, <u>N. MOAZZEN-AHMADI</u>, Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, CANADA; V.-M. HORNEMAN, Department of Physical Sciences, University of Oulu, PO Box 3000, Fin-90014, Oulu, Finland.

The far-infrared spectrum of ${}^{12}\text{CH}_3{}^{13}\text{CH}_3$ is studied between $220 - 350 \text{ cm}^{-1}$ at an effective resolution of $0.004 - 0.005 \text{ cm}^{-1}$ using a Bruker IFS-120 HR. Observation of the torsional fundamental ν_6 (289 cm⁻¹) and the torsional hot band $2\nu_6 - \nu_6$ (255 cm⁻¹), together with the lowest frequency vibrational fundamental ν_{12} (821.5 cm⁻¹), also obtained with the same spectrometer at an effective resolution of 0.0025 cm^{-1} , gives information on the torsional stack of the ground vibrational state and that for $v_{12} = 1$ state. The frequencies are analysed in terms of a 2-state fit to determine the torsion mediated Coriolis interactions between the torsional stacks. A comparison is made with a 2-state fit of similar data for ${}^{12}\text{CH}_3$.