INTRAMOLECULAR VIBRATIONAL ENERGY REDISTRIBUTION IN THE REACTION $\rm H_3^+$ + CO \rightarrow H_2 + HCO^+/HOC^+

TSUNEO HIRANO, Department of Chemistry, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan; HUI LI, ROBERT J. LE ROY, and <u>TAKAYOSHI AMANO</u>, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Observations of the rotational lines of HCO⁺ produced in an extended negative glow discharge revealed high vibrational temperatures for the stretching vibrational modes, and non-thermal population distributions among the different ℓ levels of excited bending vibrational states.^{*a,b*} These results provide critical tests of our understanding of the dynamics and intramolecular vibrational energy redistribution (IVR) in this reaction process. The IVR in the HNC \leftrightarrow HCN isomerization reaction^{*c*} has been studied previously by *ab initio* direct dynamics and vibration-mapping^{*d*} methods. An extension of the method used for the HNC/HCN isomerization reaction yields a new procedure for studying "IVR in reactions" which is applied to HCO⁺/HOC⁺ production in the H₃⁺ + CO reaction, as described by the five-dimensional potential energy surface and pathways for this reaction reported recently by Li *et al.*^{*e*}

Dynamics calculations have been performed for "co-linear configuration" reactions in which H_3^+ approaches the C end of CO with a translational temperature of 20 K (a typical kinetic temperature of dark clouds) or 330 K (a typical translational temperature for ions in a glow discharge). As H_3^+ approaches CO with the lower-temperature translational energy, the hopping of H^+ to the CO moiety to form HCO⁺ occurs over a period of about 100 fs, and the H–C stretching mode of the product HCO⁺ is highly excited. This excitation can relax within the same vibrational ladder and/or be transferred to the bending mode through anharmonic coupling. Details of direct dynamics calculations for this process will be reported.

^aT. Hirao, S. Yu, and T. Amano, J. Chem. Phys., 127,074301 (2007).

^bT. Hirao, S. Yu, and T. Amano, J. Mol. Spectrosc., 248, 26 (2008).

^cY. Kumeda, Y. Minami, K. Takano, T. Taketsugu, and T. Hirano, J. Mol. Struct. (THEOCHEM), 458, 285 (1999)

^dT. Hirano, T. Taketsugu, and Y. Kurita, J. Phys. Chem., 98, 6936 (1994).

^eH. Li, T. Hirano, T. Amano, and R.J. Le Roy, J. Chem. Phys., 129, 244306 (2008).