POLAR (ACYCLIC) ISOMER OF FORMIC ACID DIMER: RAMAN SPECTROSCOPY STUDY

ROMAN M. BALABIN, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

Formic (methanoic) acid spectral range of 575–1150 cm $^{-1}$ has been studied by gas-phase Raman spectroscopy method. A weak Raman-active vibration of polar (acyclic) HCOOH dimer has been found at 864 ± 2.1 cm $^{-1}$ and assigned using quantum chemistry data. The temperature-dependence of intensity ratios of Raman lines was used to evaluate the thermodynamic parameters of polar dimer. Its experimental dimerization enthalpy (Δ H) was found to be -8.6 ± 0.2 kcal mol $^{-1}$. Entropy of dimerization has been evaluated using theoretical (MP2) Raman scattering activities. Its value (Δ S) is estimated as -36 ± 2 cal mol $^{-1}$ K $^{-1}$. The results are compared with the published experimental data and calculations. The presented results can be used for molecular dynamics simulations, hydrogen bond energy estimation, and analysis of CH_2O_2 vapor density measurements.