ROTATIONAL CONFORMERS OF GROUP VI (Cr, Mo, and W) METAL BIS(TOLUENE) SANDWICH COM-PLEXES

<u>JUNG SUP LEE</u>, SUDESH KUMARI, and DONG-SHENG YANG, *Department of Chemistry, University of Kentucky, Lexington, KY* 40506-0055.

Transition metal bis(arene) sandwich complexes may adopt eclipsed or staggered conformations due to the aromatic ring rotations about the metal-arene axis.^{*a*,*b*} In this study, the group VI (Cr, Mo, and W) metal bis(toluene) complexes are synthesized in a laserablation molecular beam source, and their rotational conformers are identified by pulsed-field-ionization zero-electron-kinetic-energy (ZEKE) spectroscopy. For Cr-bis(toluene), the ZEKE spectrum shows three distinctive vibrationless (0-0) transitions between the ground electronic states of the neutral and ionic complexes at 42739(5), 42745(5), and 42805(5) cm⁻¹, corresponding to ionization energies of 180°, 60°/120°, and 0° rotamers. In addition, the spectrum exhibits metal-toluene bending (164, 180, 196, and 223 cm⁻¹) and stretching (278 and 291 cm⁻¹) frequencies of these rotamers. The ground electronic states of the 0° and 180° rotamers are ¹A₁ (C_{2v}) and ¹A_g (C_{2h}) in the neutral form and ²A₁ (C_{2v}) and ²A_g (C_{2h}) in the ionized form, respectively. For the 60° and 120° rotamers, the ground states of the neutral molecules are ¹A (C₂), and those of the corresponding ions are ²A (C₂). Through the variation of the molecular beam conditions, the eclipsed conformer (0°) is determined to be more stable than the staggered ones (180°, 120°, and 60°). Similarly, multiple conformers are identified for the Mo and W complexes.

^{*a*}B.S. Sohnlein, S. Li, and D.S. Yang, J. Chem. Phys. 123, 214306 (2005); B.S. Sohnlein and D.S. Yang, J. Chem. Phys. 124, 134305 (2006) ^{*b*}S.Y. Ketkov, H.L. Sezle, and F.G.N. Cloke, Angew. Chem. Int. Ed. 46, 7072 (2007) and references therein.