MASS-ANALYZED THRESHOLD IONIZATION OF LANTHANUM OXIDE CLUSTERS: La2O2 AND La3O4

<u>LU WU</u>, CHANGHUA ZHANG, SERGIY KRASNOKUTSKI, and DONG-SHENG YANG, *Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055*.

Lanthanum oxide clusters are produced by laser vaporization in a pulsed cluster source and identified by photoionization mass spectrometry. Vibrationally resolved ion spectra are obtained with mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectra of La_2O_2 and La_3O_4 exhibit a very strong 0-0 transition, indicating similar geometries for the neutral and ionized clusters and a very weakly bonding or non-bonding electron ejected from an outmost molecular orbital. The ionization energies of La_2O_2 and La_3O_4 are measured to be 36937(5) and 28028(5) cm⁻¹, respectively. In addition, the spectra of both clusters display a number of vibrational intervals that are associated with metal-metal, metal-oxygen, and oxygen-oxygen vibrations. Preliminary data analysis shows that the La_2O_2 cluster has a D_{2h} planar structure and La_3O_4 has a C_{3v} cage-like structure, both with alternating La-O-La bonds. The spectra may be assigned to the ${}^2Ag \leftarrow {}^1Ag$ transition in the case of La_2O_2 and ${}^1A_1 \leftarrow {}^2A_1$ in La_3O_4 .