CHARACTERIZATION OF A WATER-HEXAFLUOROBENZENE COMPLEX USING MATRIX ISOLATION IN-FRARED SPECTROSCOPY

<u>JAY C. AMICANGELO</u>, DANIEL G. IRWIN, CYNTHIA J. LEE, and NATALIE C. ROMANO, NANCY L. SAXTON, *School of Science, Penn State Erie, Erie, PA 16563*.

Matrix isolation infrared spectroscopy was used to characterize a 1:1 complex of water (H₂O) with hexafluorobenzene (C₆F₆). Codeposition experiments with H₂O and C₆F₆ were performed at 17 K using nitrogen and argon as the matrix gases. New infrared bands attributable to the H₂O-C₆F₆ complex were observed near the asymmetric stretching, symmetric stretching, and bending vibrations of the water monomer and near the C-F and C-C stretching vibrations of the C₆F₆ monomer. Identification of the new infrared bands to those of the complex were established by comparing the co-deposition spectra with the spectra of the individual monomers, by performing experiments with isotopically labeled water (D₂O and HDO), and by matrix annealing experiments. Theoretical calculations were also performed for the H₂O-C₆F₆ complex using ab initio and density functional theory methods. In general, the calculations predict the H₂O and C₆F₆ vibrational frequencies in the H₂O-C₆F₆ complex to be shifted with respect to the H₂O and C₆F₆ monomers by similar magnitudes as to what we observe experimentally, lending support to our assignments.