HIGH-RESOLUTION SPECTROSCOPY OF np RYDBERG STATES OF He₂: 1. RYDBERG-STATE-RESOLVED THRESHOLD IONIZATION SPECTRA OF METASTABLE He₂

<u>JINJUN LIU</u>, DANIEL SPRECHER, MATTHIAS RAUNHARDT, MARTIN SCHÄFER, and FRÉDÉRIC MERKT, ETH Zürich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland.

A supersonic beam of metastable He^{*}₂ a ${}^{3}\Sigma_{u}^{+}$ molecules was generated using a pulsed discharge at the exit of a pulsed valve prior to the gas expansion into vacuum.^{*a*} Transitions to high *n*p Rydberg states were recorded using photoionization and Rydberg-state-resolved threshold ionization spectroscopy.^{*b*} Overview scans at moderate resolution (0.3 cm⁻¹) were obtained with ionization fields ranging from 1.3 to 133 V/cm, lowering the ionization thresholds by 5.5 and 55 cm⁻¹, respectively. Using a solid-state UV laser system^{*c*} with a 20 MHz bandwidth, high-resolution spectra of Rydberg series with *n* up to 150 and with resolved fine structure of the initial He^{*}₂ a ${}^{3}\Sigma_{u}^{+}$ (*N*") state were recorded. The assignment of the observed Rydberg states is based on multichannel quantum defect theory calculations from a recent study^{*a*} of pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron and photoionization spectra of He₂ (see following talk). The extrapolation of the observed Rydberg series to their limits enabled the determination of the ionization energy of the a ${}^{3}\Sigma_{u}^{+}$ state and the rotational structure of the He^{*}₂ ion with a precision of better than 20 MHz.

^aM. Raunhardt, M. Schäfer, N. Vanhaecke, F. Merkt, J. Chem. Phys. 128, 164310 (2008).

^bR. Seiler, U. Hollenstein, G. M. Greetham, F. Merkt, Chem. Phys. Lett. 346, 201 (2001).

^cR. Seiler, Th. A. Paul, M. Andrist, F. Merkt, Rev. Sci. Instr. 76, 103103 (2005).