A supersonic beam of metastable He_2^+ molecules was generated using a pulsed discharge at the exit of a pulsed valve prior to the gas expansion into vacuum. Transitions to high np Rydberg states were recorded using photoionization and Rydberg-state-resolved threshold ionization spectroscopy. Overview scans at moderate resolution (0.3 cm$^{-1}$) were obtained with ionization fields ranging from 1.3 to 133 V/cm, lowering the ionization thresholds by 5.5 and 55 cm$^{-1}$, respectively. Using a solid-state UV laser system with a 20 MHz bandwidth, high-resolution spectra of Rydberg series with n up to 150 and with resolved fine structure of the initial He_2^+ 3Σ^+ (N'') state were recorded. The assignment of the observed Rydberg states is based on multichannel quantum defect theory calculations from a recent study of pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron and photoionization spectra of He_2 (see following talk). The extrapolation of the observed Rydberg series to their limits enabled the determination of the ionization energy of the a 3Σ^+ state and the rotational structure of the He_2^+ ion with a precision of better than 20 MHz.

References