RELATIVISTIC JAHN-TELLER EFFECTS IN THE QUARTET STATES OF K\textsubscript{3} AND RB\textsubscript{3}: A VIBRATIONAL ANALYSIS OF THE 24E' \leftarrow 14A'_2 ELECTRONIC TRANSITIONS BASED ON AB INITIO CALCULATIONS

A. W. HAUSER, G. AUBÖCK, C. CALLEGARI and W. E. ERNST, Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria.

We apply the Multireference Rayleigh Schrödinger Perturbation Theory of second order to obtain the adiabatic potential energy surface of the 14A'_2 electronic groundstate and the 24E' excited state of K\textsubscript{3} and Rb\textsubscript{3}. Both trimers show a typical Exe Jahn-Teller distortion in their 24E' state, which is analyzed in terms of the relativistic Jahn-Teller effect theory. Linear, quadratic as well as spin-orbit coupling terms are extracted from the \textit{ab initio} results and used to obtain theoretical spectra for a direct comparison to laser-induced fluorescence and magnetic circular dichroism spectra of alkali-doped helium nanodroplets [Auböck et al. J. Chem Phys. \textbf{129} 114501 (2008)].