PHOTODISSOCIATION SPECTROSCOPY AND DISSOCIATION DYNAMICS OF TiO⁺(CO₂)

<u>MANORI PERERA^a</u>, RICARDO B. METZ^b, Department of Chemistry, University of Massachusetts Amherst^b, Amherst, MA.

TiO⁺(CO₂) is produced by reaction of laser-ablated titianium atoms with CO₂ and subsequent clustering, supersonically cooled and its electronic spectroscopy characterized by photofragment spectroscopy, monitoring loss of CO₂. The photodissociation spectrum consists of a vibrationally-resolved band in the visible, with extensive progressions in the covalent Ti-O stretch (952 cm⁻¹ vibrational frequency and 5 cm⁻¹ anharmonicity), and in the TiO⁺-(CO₂) stretch (186 cm⁻¹) and rock (45 cm⁻¹). The band origin is at 13918 cm⁻¹, assigned using titanium isotope shifts, and the spectrum extends to 17350 cm⁻¹. The excited state lifetime decreases dramatically with increasing internal energy, from 1100 ns for the lowest energy band ($v_{TiO}=0$), to <50 ns for $v_{TiO}=3$. The long photodissociation lifetime substantially reduces the photodissociation quantum yield at low energy, likely due to competition with fluorescence. Electronic structure calculations help to assign the spectrum of TiO⁺(CO₂) and predict allowed electronic transitions of TiO⁺ in the visible, which have not been previously measured. Time-dependent density functional calculations predict that the observed transition is due to B, ${}^{2}\Pi \leftarrow X$, ${}^{2}\Delta$ in the TiO⁺ chromophore, and that binding to CO₂ red shifts the TiO⁺ transition by 1508 cm⁻¹, and lowers the Ti-O stretch frequency by 16 cm⁻¹. Combining the computational and experimental results, the ${}^{2}\Pi$ state of TiO⁺ is predicted to lie at T₀ = 15426 cm⁻¹, with frequency $\omega e = 968$ cm⁻¹ and anharmonicity $\omega e xe = 5$ cm⁻¹. The calculations also predict that there is only one low-lying ${}^{2}\Sigma$ state of TiO⁺, contrary to conclusions derived from photoelectron spectroscopy of TiO. Prospects for astronomical observation of TiO⁺ via the ${}^{2}\Pi {}^{-2}\Delta$ transition are also discussed.

^aDepartment of Chemistry, University of Illinois at Urbana-Champaign