A NEW PROGRAM FOR NON-EQUIVALENT TWO-TOP INTERNAL ROTORS WITH A C ${ }_{s}$ FRAME

I. KLEINER, Laboratoire Interuniversitaire des Systèmes Atmosphériques, CNRS et Universités Paris 7 et Paris 12, 61 av. Général de Gaulle, 94010, Créteil, France; J. T. HOUGEN, Optical Technology Division, National Institute for Standards and Technology, Gaithersburg, MD 20899-8441, USA.

We have written a new program to calculate and fit torsion-rotation transitions in molecules containing two inequivalent methyl tops $\left(\mathrm{C}_{3 v}\right)$ and having the rest of the atoms lying in a plane of symmetry. We based our work on the theoretical model and Hamiltonian described by Ohashi et al for the N -methylacetamide molecule ${ }^{a}$. In the absence of top-top interactions, each asymmetric top energy levels splits into AA, AE, EA and EE components where the individual letters A and E indicate the symmetry species of the wave function with respect to internal rotation of one of the methyl tops. The pair of letters taken together indicates the species in the G_{18} permutation-inversion group appropriate for the molecule, so $\mathrm{AA}, \mathrm{AE}, \mathrm{EA}$, and EE correspond to $\mathrm{A}_{1}\left(\right.$ or $\left.\mathrm{A}_{2}\right), \mathrm{E}_{2}, \mathrm{E}_{1}$ and $\mathrm{E}_{3} \oplus \mathrm{E}_{4}$, respectively. In the previous study, the torsion-rotation Hamiltonian was diagonalized directly in a one-step process using torsionrotation functions $\left.|J, K>| m_{1}\right\rangle \mid m_{2}>$ where m_{1} and m_{2} represent the free-rotor basis functions for top 1 and top 2 . The one-step diagonalization made however the least-squares fitting of moderate J values very slow, even for rather small values of m_{1} and m_{2}. Our goal is to write a code which will be faster and which allows us to reach higher J values. We follow a two-step procedure to diagonalize the Hamiltonian and implemented a banded-matrix diagonalization routine in order to speed up the code. We tested the code with the published N -methylacetamide Fourier-transform microwave data. The principles of the method, as well as the limitations will be discussed ${ }^{b}$.

[^0]
[^0]: ${ }^{a}$ N. Ohashi, J. T. Hougen, R. D. Suenram, F.J. Lovas, Y. Kawashima, M. Fujitake and J. Pyka, J. Mol. Spectrosc., 227, 28-42 (2004)
 ${ }^{b}$ IK thanks the ANR-08-BLAN-0054 for financial support

