NEW ANALYSIS OF THE ν_3 BAND OF HDCO (MONODEUTERATED FORMALDEHYDE) IN THE 5.8 μm REGION

L. GOMEZ, Laboratoire de Dynamique, Interactions et Régativité (LADIR, CNRS UMR 7075) Université Pierre et Marie Curie - Paris VI ; Case courrier 49, Bât F 74, 4, place Jussieu, 75252 Paris Cedex, France.;
A. PERRIN, Laboratoire Inter Universitaire des Systemes Atmosphériques, CNRS, Université Paris 12, 61 Av du General de Gaulle, 94010 Créteil Cedex France; G. C. MELLAU, Justus-Liebig - Universität, Physikalisch-Chemisches Institut, Heinrich-Buff-Ring 58, D-35392 Gießen, Germany.

Using high-resolution Fourier transform spectra of mono deuterated formaldehyde (HDCO) recorded in the 5.8 μm spectral range at Giessen (Germany), we carried out an extensive analysis of the strong ν_3 fundamental band (carbonyl stretching mode) at 1724.2676 cm$^{-1}$, starting from results of a previous analysis a. For this hybrid band (with both A- and B-type transitions) the analysis was pursued up to high rotational quantum numbers. In this way, it was possible to evidence resonances which perturb the ν_3 lines which are due to the existence of the 2ν_5 (at 2059 cm$^{-1}$) and ν_5+ν_6 (at 2087 cm$^{-1}$) dark bands b. In addition a local resonance is perturbing the 31 levels which is due to a crossing with the 41 energy levels. However the 41 state is also involved in strong vibration-rotation interactions coupling the $\{5^1, 6^1, 4^1\}$ system of resonating states of HDCO c. Therefore the final energy levels calculation which was performed for the $\{5^1, 6^1, 4^1, 3^1, 5^2, 5^1 6^1\}$ resonating states accounts for the observed A-type, B-type C-type Coriolis (and/or) Fermi resonances. In this way it was possible to reproduce the observed line positions, within their experimental uncertainties. Finally using a ν_5 band intensity available in the literature d we generated, for the first time, a list of line parameters (positions and intensities) for the 5.8 μm band of HDCO.

aJohns JWC, McKellar ARW., J Mol Spectrosc 1977; 64: 327-339
bν_4, ν_5 and ν_6 correspond to the CHD bending (at 1396 cm$^{-1}$), the CHD rocking (at 1028 cm$^{-1}$) and the CHD out of plane (at 1059 cm$^{-1}$) modes, respectively