JET-COOLED LASER SPECTROSCOPY OF A JAHN-TELLER AND PSEUDO JAHN-TELLER ACTIVE MOLECULE: THE NITRATE RADICAL

<u>MING-WEI CHEN</u>, Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University, 120 W. 18th Avenue, Columbus, Ohio 43210; KANA TAKEMATSU, MITCHIO OKUMURA, Arthor Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125; and TERRY A. MILLER, Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University, 120 W. 18th Avenue, Columbus, Ohio 43210.

Well-known as an important intermediate in atmospheric chemistry, the nitrate radical (NO₃) has been extensively studied both experimentally and theoretically. The three energetically lowest electronic states ($\tilde{X} \, {}^{2}A'_{2}$, $\tilde{A} \, {}^{2}E''$, and $\tilde{B} \, {}^{2}E'$) are strongly coupled by vibronic interactions and hence it is a textbook molecule for understanding the coupling between nearby potential energy surfaces. Such coupling has been treated in considerable detail theoretically.^{*a*} However, corresponding experimental characterization of the interaction is much less detailed. The experimental results primarily consist of IR measurements of vibrational transitions in the ground state.^{*bc*} In addition, the electronically forbidden \tilde{A} - \tilde{X} transition has been observed in ambient temperature CRDS studies.^{*d*} To understand both the Jahn-Teller and pseudo Jahn-Teller coupling in the molecule, further measurements are required with different selection rules and/or higher resolution to resolve the rotational structures of different transitions. In our group, a high-resolution (source $\Delta \nu \approx 100$ MHz in NIR region), jet-cooled CRDS system^{*e*} can be applied to rotationally resolve the electronically forbidden \tilde{A} - \tilde{X} transition. Furthermore, our high-resolution LIF/SEP system (source $\Delta \nu \approx 100$ MHz) can provide the direct, rotationally resolved measurements of the \tilde{B} - \tilde{X} and \tilde{B} - \tilde{A} transitions by operating in the LIF and SEP modes respectively. Such data can provide unambiguous spectral assignments in the \tilde{X} , \tilde{A} and \tilde{B} states.

^aJ. F. Stanton, J. Chem. Phys., <u>126</u>, 134309 (2007)

^bK. Kawaguchi, E. Hirota, T. Ishiwata, and I. Tanaka, J. Chem. Phys., <u>93</u>, 951 (1990)

^cK. Kawaguchi, T. Ishiwata, E. Hirota, and I. Tanaka, *Chem. Phys.*, <u>231</u>, 193 (1998)

^dA. Deev, J. Sommar, and M. Okumura, J. Chem. Phys., <u>122</u>, 224305 (2005)

^eS. Wu, P. Dupré, and T. A. Miller, Phys. Chem. Chem. Phys., <u>8</u>, 1682, (2006)