DIRECT MEASUREMENTS OF THE FUNDAMENTAL ROTATIONAL TRANSITIONS OF CD AND ¹³CH $(X^2\Pi_r)$

D. T. HALFEN, <u>L. M. ZIURYS</u>, University of Arizona, Steward Observatory, Department of Chemistry Arizona Radio Observatory, Tucson, AZ 85721; J. C. PEARSON, AND B. J. DROUIN, Jet Propulsion Laboratory, Pasadena, CA 91109.

The $N = 1 \rightarrow 1$ and $N = 1 \rightarrow 2$ rotational transitions of CD, and the $N = 1 \rightarrow 1$ lines of ¹³CH have been measured in their ² Π_r ground electronic states using sub-mm direct absorption spectroscopy. The measurements below 600 GHz (CD: $N = 1 \rightarrow 1$ and ¹³CH: $N = 1 \rightarrow 1$) were carried out at Arizona, while those in the 900 GHz range were conducted at JPL (CD: $N = 1 \rightarrow 1$). The two radical species were created in an electrical discharge of either ¹³CH₄ or CD₄. Both lambda-doubling and hyperfine splittings were resolved in the spectra. The data were analyzed with a case(b) effective Hamiltonian, resulting in an improvement in the lambda-doubling and deuterium, proton, and ¹³C hyperfine constants. Highly accurate rest frequencies are now available for astronomical searches for these species. CH is an abundant and widespread interstellar molecule, and thus CD and ¹³CH should be of astrophysical interest.