MICROWAVE STUDIES OF TWO CONFORMERS OF 6-METHYL-3-HEPTYNE AND THREE OF 2METHYLPENTANE

JOSEPH FOURNIER, Dept. of Chemistry, Univ. of Connecticut, Storrs, CT 06269-3060; ROBERT K. BOHN, Dept. of Chemistry, Univ. of Connecticut, Storrs, CT 06269-3060; H. HARVEY MICHELS, Dept. of Physics, Univ. of Connecticut, Storrs, CT 06269-3046.

The equilibrium torsional angle between two alkyl substituents connected by a $\mathrm{C} \equiv \mathrm{C}$ linkage is determined by delicate interactions between the groups. 6-Methyl-3-heptyne (ethyl isobutyl acetylene, ) displays rotational microwave spectra of two conformers, $\mathrm{C}_{s}$ and $\mathrm{C}_{1}$ symmetry, which arrange the opposing alkyl groups syn-eclipsed or nearly so. The dominant interaction determining the dihedral angle about the acetylene axis is the small dispersion attraction between the ethyl and isobutyl groups. 2-Methylpentane, 6-methyl-3heptyne without $\mathrm{C} \equiv \mathrm{C}$, has three characterized conformers. The alkane has more conformations than the alkyne because the $\mathrm{C} 2-\mathrm{C} 3$ bond has a substantial ethane-like barrier supporting gauche and anti conformations while the alkyne's $\mathrm{C} 2-(\mathrm{C} \equiv \mathrm{C})-\mathrm{C} 5$ tiny torsional barrier has only a single minimum.
Rotational constants for the two conformers of 6-methyl-3-heptyne are $3282.9197(6)$, $942.43143(20)$, and $886.33450(16) \mathrm{MHz}$ and $4603.7990(7), 798.12154(13)$, and $713.87656(11) \mathrm{MHz}$, respectively. Rotational constants for the three conformers of 2methypentane are 5820.1248(5), 1848.9706(3), and $1656.7897(4) \mathrm{MHz} ; 6615.4521(10), 1713.06566(20)$, and $1473.09913(11) \mathrm{MHz}$; and $5501.9431(11), 1980.37687(20)$, and $1789.41065(20) \mathrm{MHz}$, respectively. Each spectrum is fit to an rmsd of 3 kHz or less.

