COMPUTATIONAL MOLECULAR SPECTROSCOPY OF FeCO IN THE \tilde{X} ³ Σ^- AND 1 ⁵ Σ^- ELECTRONIC STATES

<u>TSUNEO HIRANO</u>, REI OKUDA, and UMPEI NAGASHIMA, *Research Institute for Computational Sciences*, *National Institute of Advanced Industrial Science and Technology*, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; PER JENSEN, Theoretische Chemie, Bergische Universität, D-42097 Wuppertal, Germany.

FeCO is a molecule of astrophysical interest. It also served as a bench mark molecule for testing basis sets and *ab initio* calculation methods.^{*a*,*b*} We have previously reported molecular constants and relative energies of $\tilde{X}^{3}\Sigma^{-}$ and $1^{5}\Sigma^{-}$ states of FeCO, based on the two-dimensional *ab initio* potential energy surfaces (PESs) determined at the MR-SDCI+*Q*+*E*_{rel}/[Roos ANO (Fe, C, O)] and MR-ACPF+*E*_{rel}/[Roos ANO (Fe, C, O)] levels of theory.^{*c*} We will report here molecular properties derived from the three-dimensional PESs calculated at the level of MR-SDCI+*Q*+*E*_{rel}/[Roos ANO (Fe, C, O)]. Calculated bond lengths r_e (Fe–C), r_e (C–O), and dipole moment (with experimental r_s bond lengths^{*d*} in parentheses) are 1.722 (1.7270) Å, 1.160 (1.1586) Å, and 3.20 D for the $\tilde{X}^{3}\Sigma^{-}$ state, and 1.844 Å, 1.153 Å, and 0.29 D for the $1^{5}\Sigma^{-}$ state, respectively. The relative energy of $1^{5}\Sigma^{-}$ has been calculated to be 1.27 kcal mol⁻¹, to be compared with the experimental value of 3.24 kcal mol⁻¹.^{*e*} The general trends in low-spin/high-spin issue reported for CoH,^{*f*} CoCN,^{*g*} and NiCN^{*h*} are also observed for the NiCN $\tilde{X}^{3}\Sigma^{-}$ and $1^{5}\Sigma^{-}$ state pair.

^aA. Ricca and C. W. Bauschlicher, *Theor. Chem. Acc.* 106, 314, (2001).

^bT. Noro, M. Sekiya, T. Koga, and H. Matsuyama, Theor Chem. Acc. 104, 146, (2000).

^cM. Amano, S.S. Itono, T. Hirano et al., 57th OSU International Symposium on Molecular Spectroscopy, RF11, 2002.

^dK. Tanaka, K. Sakaguchi, and T. Tanaka, J. Chem. Phys., **106**, 2118 (1997).

^eP. W. Villalta and D. G. Leopold, J. Chem. Phys. 98, 7730, (1993).

^fM. Tomonari, R. Okuda, U. Nagashima, K. Tanaka, and T. Hirano, J. Chem. Phys., **126**, 144307 (2007).

^gT. Hirano, Rei Okuda, U. Nagashima, and P. Jensen, J. Chem. Phys., 127, 014303 (2007).

^hT. Hirano, Rei Okuda, U. Nagashima, and P. Jensen, Chem. Phys., (2008), in press.