INFRARED SPECTRA OF K$^+$ (TRYPTAMINE)(H$_2$O)$_{n=1-4}$ AND K$^+$ (TRYPTAMINE)(H$_2$O)$_{n=0-2}$Ar

AMY L. NICELY AND JAMES M. LISY, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

A balance of competing electrostatic and hydrogen bonding interactions directs the structure of hydrated gas-phase cluster ions. In K$^+$ (Tryptamine) cluster ions, a favorable electrostatic interaction between the potassium cation and the tryptamine NH$_2$ lone pair stabilizes the high-energy Gph(in) and Gpy(in) conformers of neutral tryptamine. Previous studies of Tryptamine(H$_2$O)$_n$ clusters indicate that the hydrating water molecules stabilize the neutral minimum energy Gpy(out) tryptamine conformer. In this scheme, the first water molecule interacts directly with the NH$_2$ lone pair and is located to the side of the tryptamine monomer. By incorporating a potassium cation, however, the minimum energy tryptamine-water configuration is disrupted in order to maximize the electrostatic interactions with the cation, shifting so that the tryptamine-water interaction includes a π-hydrogen bond between the water and the phenyl ring of tryptamine. The infrared photodissociation spectra of K$^+$ (Tryptamine)(H$_2$O)$_{n=1-4}$ and K$^+$ (Tryptamine)(H$_2$O)$_{n=0-2}$Ar will be presented along with parallel \textit{ab initio} and thermodynamics calculations to assist with the identification of the isomers present in each experiment.