THE PURE ROTATIONAL SPECTRUM OF FeNC (X ${}^{6}\Delta_{i}$): IT HAD TO BE THERE!

<u>M. A. FLORY</u> and L. M. ZIURYS, *Department of Chemistry, Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ 85721.*

The pure rotational spectrum of FeNC has been measured in its ground electronic and vibrational state using direct absorption methods. The radical was synthesized from gas-phase Fe(CO)₅ and (CN)₂ in an AC discharge and could also be produced using metal vapor and (CN)₂ in a Broida oven. Eighteen rotational transitions have been recorded in the frequency range 150-505 GHz, many containing all six spin components. In addition, Renner-Teller effects have been observed for the excited vibrational v_2 bending mode. The $\Omega = 3/2$, 1/2, and -1/2 spin states appear to exhibit significant Λ -doubling. Preliminary results from isotopic substitution of ⁵⁴Fe, observed in natural abundance, indicate that the ground state structure is likely the linear isocyanide with a rotational constant near 4.1 GHz. Substitution of ¹³C is underway and will yield a definitive structure. The data are currently being analyzed with a case (a) Hamiltonian, and spectroscopic constants for rotation, fine structure, and Λ -doubling are being established.