The rotational spectrum of platinum monocyanide, PtCN, was observed by employing a source-modulation microwave spectrometer. The PtCN species was generated in a dc glow discharge through the mixture of CH$_3$CN and Ar by a sputtering reaction with a platinum sheet on a cathode. Paramagnetic lines were observed every 6GHz and assigned to three isotopomers, 104PtCN, 105PtCN, and 106PtCN. There was no Λ-type doubling, but hyperfine splitting due to 105Pt nuclei for 105PtCN. The hyperfine structure could be fitted to either $^2\Pi_{3/2}$ or $^2\Delta_{5/2}$ case(c) Hamiltonian within experimental error. The nuclear - spin interaction constant C_I was derived to be around 0.2 MHz, which was one order of magnitude larger than that of 105PtCO ($C_I = 0.0242$ MHz)c. This result implies that low-lying electronic states would exist comparatively near to the ground electronic state, as in the case of NiCNbc.