MICROWAVE SPECTROSCOPY OF PLATINUM MONOCYANIDE, PtCN

EMI Y. OKABAYASHI, TOSHIAKI OKABAYASHI and MITSUTOSHI TANIMOTO, Department of Chemistry, Faculty of Science, Shizuoka University, Oya 836, Shizuoka.

The rotational spectrum of platinum monocyanide, PtCN, was observed by employing a source-modulation microwave spectrometer. The PtCN species was generated in a dc glow discharge through the mixture of CH₃CN and Ar by a sputtering reaction with a platinum sheet on a cathode. Paramagnetic lines were observed every 6GHz and assigned to three isotopomers, ¹⁹⁴PtCN, ¹⁹⁵PtCN, and ¹⁹⁶PtCN. There was no Λ -type doubling, but hyperfine splitting due to ¹⁹⁵Pt nucleous for ¹⁹⁵PtCN. The hyperfine structure could be fitted to either ² $\Pi_{3/2}$ or ² $\Delta_{5/2}$ case(c) Hamiltonian within experimental error. The nuclear - spin interaction constant C_I was derived to be around 0.2 MHz, which was one order of magnitude larger than that of ¹⁹⁵PtCO (C_I = 0.0242 MHz)^a. This result implies that low-lying electronic states would exist comparatively near to the ground electronic state, as in the case of NiCN^{bc}.

^aC. J. Evans and M. C. L. Gerry J. Phys. Chem. A <u>105</u>, 9659 (2001).

^bP. M. Sheridan and L. M. Ziurys J. Chem. Phys. <u>118</u>, 6370 (2003).

^cC. T. Kingston, A. J. Merer and T. D. Varberg J. Mol. Spectrosco. 215(1), 106 (2002).