EXPERIMENTAL MAPPING OF THE ABSOLUTE VALUE OF THE ELECTRONIC TRANSITION DIPOLE MOMENT FUNCTION $\mu_e(R)$ OF THE $^7\text{Li}_2 A^1\Sigma_u^+ \rightarrow X^1\Sigma_g^+$ SYSTEM

P. Qi, O. Salihoğlu, E. Ahmed, S. Kotochigova, Physics Department, Temple University, Philadelphia, PA 19122; J. Huennekens, Physics Department, Lehigh University, Bethlehem, PA 18015; A. M. Lyyra, Physics Department, Temple University, Philadelphia, PA 19122.

Continuous wave (CW) triple resonance laser spectroscopya was used to map the absolute value of the electronic transition dipole moment function $\mu_e(R)$ of the $^7\text{Li}_2$ A-X system. In this work, the transition dipole moment matrix elements of specific rovibronic molecular transitions were first determined by fitting the observed Autler-Townes splitting spectra. Then by employing the R-centroid approximation, or a multi-variable fit involving higher moments of R, $\mu_e(R)$ has been determined within a relatively large range of internuclear distance R. Finally, this electronic transition dipole moment function is compared with the ab initio calculations with very good agreement.