THE HIGH RESOLUTION JET COOLED SPECTRUM OF PENTAFLUOROETHANE

LISA M. GOSS, Department of Chemistry, Idaho State University, Campus Box 8023, Pocatello ID, 83209; THOMAS A. BLAKE and ROBERT L. SAMS, Pacific Northwest National Laboratory, P. O. Box 999, Mail Stop K8-88, Richland, WA 99352.

The jet cooled spectrum of pentafluoroethane (C₂HF₅) has been recorded between 1100. and 1325. cm⁻¹ at a resolution of 0.0022 cm⁻¹. A rotational temperature of approximately 10 K was achieved by expanding 50 Torr of C₂HF₅ in 500 Torr of helium. Transitions belonging to five different vibrations have been assigned and fit to a Watson Hamiltonian: the ν_3 at 1309.88 cm⁻¹, the ν_4 at 1200.74 cm⁻¹, the ν_5 at 1142.78 cm⁻¹, the ν_{13} at 1223.33 cm⁻¹, and the ν_{14} at 1147.39 cm⁻¹. The rms deviations of the fits of the ν_4 band (0.0004 cm⁻¹) as well as the overlapping ν_5 (0.0006 cm⁻¹) and ν_{14} (0.0004 cm⁻¹) bands are in satisfactory agreement with the experimental uncertainty. The perturbations observed by McNaughton et al^{*a*} are still apparent in the ν_3 and ν_{13} at the rotational temperature of this study but satisfactory fits have been achieved.

^aD. McNaughton et al., Vib. Spec., <u>36</u>, 123 (2004); C. D. Thompson et al., J. Mol. Spec., <u>230</u>, 133 (2005).