The jet cooled spectrum of pentfluoroethane (C_2HF_5) has been recorded between 1100 and 1325 cm$^{-1}$ at a resolution of 0.0022 cm$^{-1}$. A rotational temperature of approximately 10 K was achieved by expanding 50 Torr of C_2HF_5 in 500 Torr of helium. Transitions belonging to five different vibrations have been assigned and fit to a Watson Hamiltonian: the ν_3 at 1309.88 cm$^{-1}$, the ν_4 at 1200.74 cm$^{-1}$, the ν_5 at 1142.78 cm$^{-1}$, the ν_13 at 1223.33 cm$^{-1}$, and the ν_{14} at 1147.39 cm$^{-1}$. The rms deviations of the fits of the ν_4 band (0.0004 cm$^{-1}$) as well as the overlapping ν_5 (0.0006 cm$^{-1}$) and ν_{14} (0.0004 cm$^{-1}$) bands are in satisfactory agreement with the experimental uncertainty. The perturbations observed by McNaughton et ala are still apparent in the ν_3 and ν_{13} at the rotational temperature of this study but satisfactory fits have been achieved.