LINE MIXING EFFECTS IN THE $\nu_2+\nu_3$ BAND OF METHANE.

ADRIANA PREDOI-CROSS, ANIL V. UNNIKRISHNAN, HENRY HEUNG, University of Lethbridge, Department of Physics, 4401 University Drive, Lethbridge, Alberta, T1K3M4, Canada; LINDA R. BROWN, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109; D. CHRIS BENNER and V. MALATHY DEVI, Department of Physics, The College of William and Mary, Williamsburg, VA 23187-8795.

This study provides the first experimental measurements of line mixing via the off diagonal relaxation matrix element formalism in air-broadened methane spectra for any vibrational band and the first off diagonal relaxation matrix elements associated with line mixing for pure methane in the $\nu_2+\nu_3$ band of 13CH$_4$. A speed-dependent Voigt profile with line mixing is used with a multispectrum nonlinear least squares curve fitting technique. The off diagonal relaxation matrix element coefficients of eighteen pairs of $\nu_2+\nu_3$ transitions between 4410 and 4629 cm$^{-1}$ have been determined. The measured self-line mixing coefficients vary from 0.0019 to 0.0390 cm$^{-1}$ atm$^{-1}$ at 296 K, and for air line mixing coefficients vary between 0.0005 and 0.0205 cm$^{-1}$ atm$^{-1}$ at 296 K. The spectral data used in the analysis were recorded at a resolution of 0.01-cm$^{-1}$ using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona.