QUANTUM TRANSLATION-ROTATION DYNAMICS OF HYDROGEN MOLECULES CONFINED IN THE CAGES OF CLATHRATE HYDRATES

ZLATKO BAČIĆ, FRANCESCO SEBASTIANELLI, MINZHONG XU, YAEL S. ELMATAD and JULES W. MOSKOWITZ, Department of Chemistry, New York University, New York, NY 10003.

The coupled translation-rotation (T-R) eigenstates of a hydrogen molecule inside the small dodecahedral $(H_2O)_{20}$ cage of the structure II clathrate hydrate have been determined accurately by means of quantum 5D calculations, for *para-* and *ortho*-H₂^{*a*}, as well as *ortho*-and *para*-D₂^{*b*}. In addition, the ground-state properties of two and three *para*-H₂ and *ortho*-D₂ molecules confined in the small cage have been calculated rigorously using the diffusion Monte Carlo method^{*b*}. These calculations have provided a comprehensive picture of the quantum T-R dynamics of the encapsulated molecules. The translational modes exhibit negative anharmonicity; *j* is a good rotational quantum number, with the threefold degeneracy of the *j* = 1 level lifted completely. When two hydrogen molecules are confined, they are effectively excluded from the central region of the cage, and reside within a shell less than 2 bohrs wide. If time permits, the quantum dynamics results for multiple H₂/D₂ molecules inside the large (H₂O)₂₈ cage will be presented.

^aM. Xu, Y. S. Elmatad, F. Sebastianelli, J. W. Moskowitz, and Z. Bačić, J. Phys. Chem. B 110, 24806 (2006)

^bF. Sebastianelli, M. Xu, Y. S. Elmatad, J. W. Moskowitz, and Z. Bačić, J. Phys. Chem. C 111, 2497 (2007)