VIBRATIONAL SPECTRA AND AB-INITIO CALCULATIONS FOR THE STUDY OF INTRAMOLECULAR VIBRATIONAL REDISTRIBUTION IN THE CH-CHROMOPHORE IN CHD₂I

VERONIKA HORKÁ, MARTIN QUACK, MARTIN WILLEKE, Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093, Zürich, Switzerland.

Intramolecular vibrational energy redistribution (IVR) on the femto- to picosecond time scale is a central primary process in unimolecular chemical reaction dynamics. There are two main approaches towards its understanding. One is the analysis of the highly resolved vibrational spectra of polyatomic moleculesa,b combined with \textit{ab initio} calculations. Another approach consists in time resolved femtosecond (fs) pump-probe experiments, which we have recently carried out for a series of alkyliodidesc including CHD₂I. For the latter molecule we present here results for IVR processes within the CH-chromophore. The infrared absorption spectrum of CHD₂I from 500 to 12000 cm-1 has been recorded with a Bomem Fourier transform infrared spectrometer equipped with a White type multi reflection cell and resolutions of 0.10 and 0.15 cm-1. The CH-chromophore bands dominate the vibrational overtone spectrum of CHD₂I and we have assigned 24 of them. Vibrational variational calculations were carried out for the overtone spectrum of the CH-chromophore based on a 3-dimensional \textit{ab initio} potential energy and electric dipole moment surface in normal coordinates. The anharmonic resonance structure between the CH-stretching and bending modes was investigated via an effective Hamiltonian for both experimental and theoretical spectra. Finally, we have calculated the time dependent dynamics on the fs time scaled.