TIME-RESOLVED FTIR EMISSION SPECTROSCOPY OF THE ν_1 CH STRETCH MODE OF THE KETENYL (HCCO) RADICAL

<u>M. WILHELM</u>, W. MCNAVAGE, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104; H. L. DAI, Department of Chemistry, Temple University, Philadelphia, PA 19122.

The ν_1 CH stretch, a previously uncharacterized mode of the ketenyl (HCCO) radical, was detected at 3230cm⁻¹ through time-resolved Fourier transform infrared emission spectroscopy. Ro-vibrationally excited ketenyl and ethyl (CH₂CH₃) radicals were generated, with near unit quantum efficiency, via the 193 nm photodissociation of ethyl ethynyl ether ^{*a*}.

HCC-O- CH₂CH₃ + h ν (193 nm) \rightarrow HCCO + CH₂CH₃

IR emission from the photoproducts was detected with both temporal and frequency resolution. Spectral assignments were made based upon comparison with theoretical calculations as well as 2D correlation analysis^b.

^aM. J. Krish, J. L. Millerm, L. J. Butler, H. Su, R. Bersohn, and J. Shu, J. Chem. Phys. 119, 176(2003).

^bW. McNavage, and H. L. Dai, J. Chem. Phys. 123, 184104(2005).