MODE SPECIFIC DYNAMICS IN THE PREDISSOCIATED, QUASILINEAR $B^1 A'$ STATE OF CHF PROBED BY OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY

C. TAO, C. MUKARAKATE AND S. A. REID, Department of Chemistry, Marquette University, Milwaukee, WI 53233; T. W. SCHMIDT AND S. H. KABLE, School of Chemistry, University of Sydney, NSW 2006, Australia.

We have recently observed transitions to the predissociated, quasilinear $B^1 A'$ state of a halocarbene, CHF, using a fluorescence dip detected optical-optical double resonance technique via the $A^1 A''$ state.a By excited selected rotational levels in intermediate states belonging to the progressions 2_{0}^6, $1_{1}^{12}_{2}^0$, and $2_{0}^{5}_{0} 3_{0}^{1}$, a variety of $B^1 A'$ state levels have been observed, extending to an energy of 7000 cm-1 above the $B^1 A'$ state origin. In this talk, we will focus on the dynamics of the $B^1 A'$ state. All of the observed lines are predissociated, as evidenced by Lorentzian lineshapes, and the linewidths increase with increasing energy. A pronounced mode specificity is observed; levels containing CF stretching excitation dissociate more rapidly than nearly isoenergetic bending levels. The implications of these results for the dissociation mechanism will be emphasized.