THE DETERMINATION OF \(C_0 \) (OR \(A_0 \)), \(D_0^K \), \(H_0^K \), AND SOME DARK STATES FOR SYMMETRIC-TOP MOLECULES FROM INFRARED SPECTRA WITHOUT THE NEED FOR LOACALIZED PERTURBATIONS

A. MAKI, 15012 24th Ave. S.E., Mill Creek, WA 98012-5718; T. MASIELLO, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8393; T.A. BLAKE, Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K8-88, Richland, WA 99352; J.W. NIBLER, Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003; A. WEBER, National Institute of Standards and Technology, Gaithersburg, MD 20899-8393.

Several different combinations of allowed and apparently unperturbed rovibrational transitions are used to obtain the \(K \)-dependent rotational constants, \(C_0 \), \(D_0^K \), and \(H_0^K \). A necessary ingredient for the application of this technique is a band with selection rules \(\Delta k = \pm 1 \), \(\Delta \ell = \mp 2 \), and appropriate hot or difference bands. Examples are given for boron trifluoride (BF\(_3\)), sulfur trioxide (SO\(_3\)), and cyclopropane (C\(_3\)H\(_6\)) for which there are microwave measurements that provide a check on the derived constants. Examples are also given for the determination of dark states from difference bands, and/or hot bands, and also whole forbidden bands that arise from mixing with distant energy levels.