UNRAVELING THE INTENSITY PATTERNS IN THE INFRARED SPECTRA OF X⁻(^{1,2}HO^{1,2}H) [X=F,Cl]

<u>SAMANTHA HORVATH</u> and ANNE B. McCOY, Department of Chemistry, The Ohio State University, Columbus, OH 43210.

The distortions from equilibrium and changes in the infrared spectra of a single water molecule when it is complexed with a halide ion (F⁻, Cl⁻, and Br⁻) have been of great interest for the past several years.^{*a*,*b*} In these systems the bonded hydrogen stretch (ν_2), the so-called "proton-transfer" mode, as well as the in-plane (ν_4) and the out-of-plane (ν_6) bending modes have displayed unexpected intensity patterns in the experimental infrared spectra.^{*c*} An example of such anomalies can be seen in the ν_2 mode of F⁻(H₂O). This vibrational mode exhibits significant intensity in the fundamental transition, over ten times that of any other fundamental, and its frequency is shifted by nearly 1500 cm⁻¹ to the red of the free OH stretch. Analysis of the first and second overtones in ν_2 indicates that anharmonicity is not as significant as one might expect from such a large redshift of the fundamental.

We investigate the underlying motions associated with the ν_2 , ν_4 , and ν_6 modes by calculating the potential energy and dipole moment surfaces at the MP2 level of theory using aug-cc-pVTZ basis sets. The X⁻(H₂O) vibrational energies and wave functions are determined using one- and two-dimensional^d variational calculations. Our theoretical results reproduce the experimental findings extremely well and provide insight into the physics behind these intriguing spectral features.

^aD. D. Kemp and M. S. Gordon, J. Phys. Chem. A <u>109</u>, 7688 (2005).

^bE. G. Diken et al., J. Phys. Chem. A <u>109</u>, 571 (2005).

^cJ. R. Roscioli, E. G. Diken, M. A. Johnson, S. Horvath, and A. B. McCoy, J. Phys. Chem. A <u>110</u>, 4943 (2006).

^dD. T. Colbert and W. H. Miller, J. Chem. Phys. <u>96</u>, 1982 (1992).