The direct deperturbation analysis of the singlet-triplet $A^1\Sigma^+ \sim \text{b}^3\Pi$ complex of Na$^{85}$Rb and Na$^{87}$Rb isotopomers was performed in the framework of the inverted channel-coupling approach\textsuperscript{a}. Besides of Born-Oppenheimer potential energy curves of the mutually perturbed states and the off-diagonal spin-orbit (SO) $A \sim \text{b}$ coupling function, the SO splitting of the $\text{b}^3\Pi$ state was determined due to the pronounced electronic-rotation interaction between the $\text{b}^3\Pi_0$ and $\text{b}^3\Pi_1$ components observed for high $J$-levels. Overall 24 mass-invariant fitting parameters have been required to reproduce about 2300 experimental term values of both isotopomers with a standard deviation of 0.012 cm$^{-1}$ which is consistent with the uncertainty of the Fourier transform spectra measurement. The experimental relative intensities in the $D^1\Pi \rightarrow A \sim \text{b}$ spectra highlighted the breakdown of the conventional oscillation theorem. The strong intensity borrowing effect caused by the SO coupling and enhanced by the violation of the Franck-Condon principle was analyzed. The calculated $A \sim \text{b} \rightarrow a$, $X$ transition probabilities were applied for simulation of the stimulated Raman processes $a^3\Sigma^+ \rightarrow A \sim \text{b} \rightarrow X^1\Sigma^+$ which can lead to efficient formation of ultracold NaRb molecules in the ground level $v_X = 0$; $J_X = 0$. The quantitative transition moments predicted for favorable lambda schemes show that such experiments are feasible.