RO-VIBRATIONAL ANALYSIS OF THE ν_4 , ν_6 and ν_3 BANDS OF THIOFORMALDEHYDE: EXAMPLE OF A MAS-SIVE Z-TYPE CORIOLIS RESONANCE

<u>W. J. LAFFERTY</u>, Optical Technology Division, NIST Gaithersburg, MD 20899, USA; J.-M. FLAUD, A. PERRIN, Laboratoire Inter Universitaire des Systemes Atmosphériques, CNRS, Universités Paris 12 et 7, 61 Av du Général de Gaulle, 94010 Créteil Cedex France; H. BECKERS, Y.S. KIM, H. WILLNER, Anorg. Chemistry, University of Wuppertal, D-42119 Wuppertal, GERMANY.

The infrared spectrum of thioformaldehyde (CH₂S) is of interest since this species is one of the myriad of molecules found in the interstellar space. From a spectroscopic point of view, it is of even more interest since the two lowest vibrational modes, the in-plane rocking mode, ν_6 (B₂), and the out-of-plane wagging mode, ν_4 (B₁), fall at 990.18 and 991.02 cm⁻¹ respectively. This separation of only 0.84 cm⁻¹ leads to a massive z-type Coriolis resonance where many of the rotational levels of each of the two vibrational states are mixed nearly 50% with each other. To make the situation even more interesting the C=S stretching vibration, ν_3 , with A1 symmetry occurs nearby at 1059 cm⁻¹. This vibrational level also interacts with the two low frequency modes which complicates the assignment and analysis. CH₂S was produced by low pressure thermolysis of a gas flow of C₃H₅SCH₃/Ar (560° C) and CH₃SCl/Ar (1150° C) in the entrance of the multipath white cell (optical path length 32 m). At a total pressure of 0.15 mbar, 40 scans were recorded for the range 750 to 1400 cm⁻¹ on a Bruker HR120 TFIR spectrometer at a resolution of 0.005 cm⁻¹ (maximum optical path difference). The initial line assignment was not straightforward. There are strong series apparent in the spectrum, but the features expected for a b-type and c-type bands were not obvious near the band center. The centers of these three vibrations have been determined from medium resolution FT spectra^a as well as laser Stark measurements^b. An initial calculation was made using this information as well as guessed values for the band intensities. This permitted the identification of several low K_a series. Finally after numerous iterations, the transitions in the spectrum were identified leading to an excellent set of ro-vibrational constants.

^aC. Clouthier, D.C. Moule, D.A. Ramsay and F.W. Birss, Can. J. Phys 60, 1212 (1982)

^bD.J. Bedwell and G. Duxbury, J. Mol. Spectrosc. 64, 531 (1980)