THE DISSOCIATIVE RECOMBINATION OF CH_3O^+ AND CD_3O^+ CATIONS

MATHIAS HAMBERG, Roslagstullsbacken 5:310 ZIP 114 21 Stockholm Sweden.

Reactions with the methoxy radical CH_3O^+ have found to be significant pathways of production and destruction of important interstellar molecules and ions like NH_4^+ , NH_3 , H_2O , $H_3O^{+\ a}$. These processes compete with the dissociative recombination of the named ions. Therefore, measurements of the rates, cross-sections and branching ratios of the dissociative recombination of the iosotopomers CH_3O^+ and CD_3O^+ have been performed at the CRYRING storage ring located at Stockholm, Sweden.

and CD_3O^+ have been performed at the CRYRING storage ring located at Stockholm, Sweden. Preliminary evaluation of the data yielded a reaction rate coefficient of $6.8*10^{-7} \left(\frac{T}{300}\right)^{-0.63} \, \mathrm{cm^3 mol^{-1} s^{-1}}$ and $8.4*10^{-7} \left(\frac{T}{300}\right)^{-0.62} \, \mathrm{cm^3 mol^{-1} s^{-1}}$ for CH_3O^+ and CD_3O^+ , respectively. Calculation of the branching ratios rendered the following branching ratios for the reaction channels leading to the fissure of the C-O bond:, H_2O+CH (0.7%), CH_2+OH (1.6%); D_2O+CD (2%), CD_2+OD (6%) respectively. The rest of the dissociative recombination rates was contributed from channels leaving the C-O bond intact: 92% and 98% for CH_3O^+ and CD_3O^+ , respectively. Contrary to the $CH_3OH_2^+$ ion^b, the pathways preserving the bond between the heavy atoms dominate.

^aS.A. Haider, Anil Bhardwaj, ICARUS, 177, 196.

^bGeppert, W. D. Semaniak, J., Hellberg, F, Österdahl, F., Roberts, H.,

Millar, T. J, Hamberg, M., Thomas, R. D., af Ugglas, M., Ehlerding, A.,

Zhaunerchyk, V., Kaminska, M., Larsson, M., Faraday Discussions, 133, 2006, accepted for publication.