MICROWAVE AND AB INITIO STUDY OF (CH₃)₃CCN-SO₃

<u>GALEN SEDO</u>, and KENNETH R. LEOPOLD, Department of Chemistry, University of Minnesota, 207 Pleasant St., SE, Minneapolis, MN 55455.

The microwave spectrum of the partially bound complex $(CH_3)_3CCN-SO_3$ has been recorded. The nitrogen-sulfur bond length is 2.34 Å, which is almost exactly half way between that in weakly bound N₂-SO₃ and the more strongly bonded $(CH_3)_3N-SO_3$. A simple Townes and Dailey analysis of the ¹⁴N nuclear quadrupole coupling constant gives a value of about 0.19 e⁻ transferred away from the $(CH_3)_3CCN$ upon complexation. Ab initio calculations at the MP2/aug-cc-pvtz level yield a binding energy relative to free $(CH_3)_3CCN$ and SO₃ of 11.0 kcal/mol, which is only about a fourth of that of $(CH_3)_3N-SO_3$. As noted previously for the complex HCCCN-SO₃, *a* comparison of the N-S bond length with those of a series of SO₃ adducts indicates that the proton affinity Lewis base is a good predictor of the properties of the complex. Indeed, spectra of this adduct were readily located on the basis of the proton affinity value for $(CH_3)_3CCN$.

^aS. W. Hunt, D. L. Fiacco, and K. R. Leopold, J. Mol. Spectrosc. 212, 213 (2002).