HIGH RESOLUTION FOURIER TRANSFORM EMISSION SPECTROSCOPY OF THE $\tilde{A}^2 \Sigma^+ - \tilde{X}^2 \Pi$ TRANSITION OF THE ICN⁺ ION

YUTAKA MIYAMOTO, ZDENEK ZELINGER, YOSHIHIRO NAKASHIMA and <u>KEIICHI TANAKA</u>, *Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka*, 812-8581 JAPAN.

The visible and near infrared emission spectrum in the 480 - 900 nm region of ICN⁺ was measured by Fourier transform spectrometer (Bruker IFS 120HR). The ICN⁺ was produced by Penning ionization of ICN with metastable He^{*}. The ICN⁺ ion has much larger spin-orbit interaction constant (A = -4343cm⁻¹) than those of the ClCN⁺ (-276cm⁻¹) and the BrCN⁺ (-1477cm⁻¹)^a. The Renner-Teller effect appears in the ν_2 excited state of $\tilde{X}^2\Pi$. It is interesting to study the Renner-Teller effect of ICN⁺. Eight vibronic bands of the $\tilde{A}^2\Sigma^+ - \tilde{X}^2\Pi$ transition (both for the $\Omega = 1/2$ and 3/2 spin components) of ICN⁺ were observed. So far, the rotational analysis was performed for two vibronic bands, $\tilde{A}^2\Sigma^+(000) - \tilde{X}^2\Pi_{3/2}(000)$ and $\tilde{A}^2\Sigma^+(000) - \mu^2\Sigma(010)$. Molecular constant, including the band origin, the effective rotational constant, centrifugal distortion constant and spin-rotation interaction constant, were determined for the $\tilde{A}^2\Sigma^+$ and $\tilde{X}^2\Pi_{3/2}$ states.

Due to the Renner-Teller effect, the $\tilde{X}^2 \Pi(010)$ state was split into four vibronic components, $\mu^2 \Sigma$, $\kappa^2 \Sigma$, and ${}^2\Delta_P (P = 3/2)$ and P = 5/2. For the $\tilde{A}^2 \Sigma^+ - \mu^2 \Sigma$ band, P_1, P_2, R_1 and R_2 -branch were observed. For the $\mu^2 \Sigma$ vibronic state, Ω -type doubling constant was determined as well as the rotational constant and centrifugal distortion constant. Renner parameter ϵ for the $\tilde{X}^2 \Pi$ state was determined to be -0.197 from the Ω -type doubling constant. The determined Renner parameter ($\epsilon = -0.197$) was close to that of BrCN⁺(-0.185). We are now analyzing the spectrum for the $\Omega = 1/2$ spin component, $\tilde{A}^2 \Sigma^+(000) - \tilde{X}^2 \Pi_{1/2}(000)$ and $\tilde{A}^2 \Sigma^+(000) - \kappa^2 \Sigma(010)$, to study the Renner-Teller effect in more detail.

^aJ. Fulara et al., J. Phys. Chem., **89**, 4213-4219, (1985)