HIGH RESOLUTION VELOCITY-MAP IMAGED PHOTODETACHMENT SPECTRA OF O^{-}AND OH^{-}

S. T. GIBSON, S. J. CAVANAGH, M. N. GALE, E. H. ROBERTS, and B. R. LEWIS, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia (email: Stephen.Gibson@anu.edu.au); J. R. GASCOOKE, School of Chemistry and Physics, The University of Adelaide, Adelaide SA 5005, Australia.

The 532 nm photodetachment spectra of O^{-}and OH^{-}have been measured using a negative-ion beam spectrometer which incorporates a velocity-map imaging (VMI) lens, ${ }^{a}$ located co-axially within the ion beam. The VMI technique offers a number of advantages for the recording of photoelectron spectra, including the simultaneous detection of all kinetic energies and the complete angular distribution of photoelectrons
To date, the energy-resolution reported for photoelectron spectra using imaging techniques have been limited to $\Delta E / E \geq 2 \%^{b}$ with improvement in energy-resolution achieved only through the use of slow electrons. Our spectrum for O^{-}was recorded with electron energies near 0.87 eV with $\Delta E / E \leq 0.5 \%$. This is a significant achievement for this technique, providing spectra with considerable detail, where individual fine-structure and some rotational transitions are resolved. Measurements above threshold provide more stringent tests on the usefulness of near threshold theories of photodetachment.
The VMI image of O^{-}is visually similar to OH^{-}, with a propensity for the electron to be ejected at 90° to the laser polarization (asymmetry parameter $\beta \sim-1$), reflecting the detachment of an electron from the p-orbital of the oxygen atom. Detail in the spectra reveal different angular distributions for individual transitions, reflecting the nature of the fine-structure transition and the interference between partial waves.

[^0]
[^0]: ${ }^{a}$ A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
 ${ }^{b}$ S. M. Sheehan, G. Meloni, B. F. Parsons, N. Wehres, and D. M. Neumark, J. Chem. Phys. 124, 064303 (2006).

